It was discovered that a buffer overflow existed in the Bluetooth stack of the Linux kernel when handling L2CAP configuration responses. A physically proximate attacker could use this to cause a denial of service (system crash). (CVE-2017-1000251)
It was discovered that the asynchronous I/O (aio) subsystem of the Linux kernel did not properly set permissions on aio memory mappings in some situations. An attacker could use this to more easily exploit other vulnerabilities. (CVE-2016-10044)
Baozeng Ding and Andrey Konovalov discovered a race condition in the L2TPv3 IP Encapsulation implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2016-10200)
Andreas Gruenbacher and Jan Kara discovered that the filesystem implementation in the Linux kernel did not clear the setgid bit during a setxattr call. A local attacker could use this to possibly elevate group privileges. (CVE-2016-7097)
Sergej Schumilo, Ralf Spenneberg, and Hendrik Schwartke discovered that the key management subsystem in the Linux kernel did not properly allocate memory in some situations. A local attacker could use this to cause a denial of service (system crash). (CVE-2016-8650)
Vlad Tsyrklevich discovered an integer overflow vulnerability in the VFIO PCI driver for the Linux kernel. A local attacker with access to a vfio PCI device file could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2016-9083, CVE-2016-9084)
It was discovered that an information leak existed in __get_user_asm_ex() in the Linux kernel. A local attacker could use this to expose sensitive information. (CVE-2016-9178)
CAI Qian discovered that the sysctl implementation in the Linux kernel did not properly perform reference counting in some situations. An unprivileged attacker could use this to cause a denial of service (system hang). (CVE-2016-9191)
It was discovered that the keyring...
3.13.0-132.181